Наверх
Меню
Новости
Статьи
twitter
Память
13 апреля 2008
5687
  Современные системы хранения данных [part1]  
 
Современные системы хранения данных [part1]

Что такое системы хранения данных (СХД) и для чего они нужны? В чём разница между iSCSI и FibreChannel? Почему данное словосочетание только в последние годы стало известно широкому кругу IT-специалистов и почему вопросы систем хранения данных всё больше и больше тревожат вдумчивые умы?

Думаю, многие заметили тенденции развития в окружающем нас компьютерном мире – переход от экстенсивной модели развития к интенсивной. Наращивание мегагерц процессоров уже не даёт видимого результата (см. обзор «Извечный вопрос: Intel или AMD?»), а развитие накопителей не поспевает за объёмом информации.

Если в случае процессоров всё более или менее понятно – достаточно собирать многопроцессорные системы и/или использовать несколько ядер в одном процессоре, то в случае вопросов хранения и обработки информации так просто от проблем не избавиться.

Существующая на данный момент панацея от информационной эпидемии – СХД. Название расшифровывается как Сеть Хранения Данных (SAN) или Система Хранения Данных. В любом случае – это специализированное железо и ПО, предназначенное для работы с огромными массивами ценной информации.

Сразу оговоримся, что нас в первую очередь интересует информация, используемая в бизнесе, от которой зависит жизнедеятельность предприятия и его нормальное функционирование. Ведь «домашнего пользователя» проблемы хранения и обработки данных касаются в меньшей степени.
Основные проблемы, решаемые СХД

Итак, какие же задачи призвана решить СХД? Рассмотрим типичные проблемы, связанные с растущими объёмами информации в любой организации. Предположим, что это хотя бы несколько десятков компьютеров и несколько разнесённых территориально офисов.

1. Децентрализация информации – если раньше все данные могли храниться буквально на одном жёстком диске, то сейчас любая функциональная система требует отдельного хранилища – к примеру, серверов электронной почты, СУБД, домена и так далее. Ситуация усложняется в случае распределённых офисов (филиалов).

2. Лавинообразный рост информации – зачастую количество жёстких дисков, которые вы можете установить в конкретный сервер, не может покрыть необходимую системе ёмкость.

Как следствие:

Невозможность полноценно защитить хранимые данные – действительно, ведь довольно трудно произвести даже backup данных, которые находятся не только на разных серверах, но и разнесены территориально.

Недостаточная скорость обработки информации – каналы связи между удалёнными площадками пока оставляют желать лучшего, но даже при достаточно «толстом» канале не всегда возможно полноценное использование существующих сетей, например, IP, для работы.

Сложность резервного копирования (архивирования) – если данные читаются и записываются небольшими блоками, то произвести полное архивирование информации с удалённого сервера по существующим каналам может быть нереально – необходима передача всего объёма данных. Архивирование на местах зачастую нецелесообразно по финансовым соображениям – необходимы системы для резервного копирования (ленточные накопители, например), специальное ПО (которое может стоить немалых денег), обученный и квалифицированный персонал.

3. Сложно или невозможно предугадать требуемый объём дискового пространства при развертывании компьютерной системы.

Как следствие:

Возникают проблемы расширения дисковых ёмкостей – довольно сложно получить в сервере ёмкости порядков терабайт, особенно если система уже работает на существующих дисках небольшой ёмкости – как минимум, требуется остановка системы и неэффективные финансовые вложения.

Неэффективная утилизация ресурсов – порой не угадать, в каком сервере данные будут расти быстрее. В сервере электронной почты может быть свободен критически малый объём дискового пространства, в то время как другое подразделение будет использовать всего лишь 20% объёма недешёвой дисковой подсистемы (например, SCSI).

4. Низкая степень конфиденциальности распределённых данных – невозможно проконтролировать и ограничить доступ в соответствии с политикой безопасности предприятия. Это касается как доступа к данным по существующим для этого каналам (локальная сеть), так и физического доступа к носителям – к примеру, не исключены хищения жёстких дисков, их разрушение (с целью затруднить бизнес организации). Неквалифицированные действия пользователей и обслуживающего персонала могут нанести ещё больший вред. Когда компания в каждом офисе вынуждена решать мелкие локальные проблемы безопасности, это не даёт желаемого результата.

5. Сложность управления распределёнными потоками информации – любые действия, которые направлены на изменения данных в каждом филиале, содержащем часть распределённых данных, создает определённые проблемы, начиная от сложности синхронизации различных баз данных, версий файлов разработчиков и заканчивая ненужным дублированием информации.

6.Низкий экономический эффект внедрения «классических» решений – по мере роста информационной сети, больших объёмов данных и всё более распределённой структуры предприятия финансовые вложения оказываются не столь эффективны и зачастую не могут решить возникающих проблем.

7. Высокие затраты используемых ресурсов для поддержания работоспособности всей информационной системы предприятия – начиная от необходимости содержать большой штат квалифицированного персонала и заканчивая многочисленными недешёвыми аппаратными решениями, которые призваны решить проблему объёмов и скоростей доступа к информации вкупе с надёжностью хранения и защитой от сбоев.

В свете вышеперечисленных проблем, которые рано или поздно, полностью или частично настигают любую динамично развивающуюся компанию, попробуем обрисовать системы хранения данных – такими, какими они должны быть. Рассмотрим типовые схемы подключения и виды систем хранения данных.
Мегабайты или транзакции?

Если раньше жёсткие диски находились внутри компьютера (сервера), то теперь им там стало тесно и не очень надёжно. Самое простое решение (разработанное достаточно давно и применяемое повсеместно) – технология RAID.

Современные системы хранения данных [part1]


При организации RAID в любых системах хранения данных дополнительно к защите информации мы получаем несколько неоспоримых преимуществ, одно из которых – скорость доступа к информации.

С точки зрения пользователя или ПО, скорость определяется не только пропускной способностью системы (Мбайт/с), но и числом транзакций – то есть числом операций ввода-вывода в единицу времени (IOPS). Увеличению IOPS способствует, что вполне логично, большее число дисков и те методики повышения производительности, которые предоставляет контроллер RAID (к примеру, кэширование).

Если для просмотра потокового видео или организации файл-сервера больше важна общая пропускная способность, то для СУБД, любых OLTP (online transaction processing) приложений критично именно число транзакций, которые способна обрабатывать система. А с этим параметром у современных жёстких дисков всё не так радужно, как с растущими объёмами и, частично, скоростями. Все эти проблемы призвана решить сама система хранения данных – чуть ниже будет видно, как и какими методами.
Уровни защиты

Нужно понимать, что в основе всех систем хранения данных лежит практика защиты информации на базе технологии RAID – без этого любая технически продвинутая СХД будет бесполезна, потому что жёсткие диски в этой системе являются самым ненадёжным компонентом. Организация дисков в RAID – это «нижнее звено», первый эшелон защиты информации и повышения скорости обработки.

Однако, кроме схем RAID, существует и более низкоуровневая защита данных, реализованная «поверх» технологий и решений, внедрённых в сам жёсткий диск его производителем. К примеру, у одного из ведущих производителей СХД – компании ЕМС – существует методика дополнительного анализа целостности данных на уровне секторов накопителя. Секторы на жёстких дисках, установленных в системы хранения данных ЕМС, имеют размер не 512 байт (стандарт), а 520 байт – лишние 8 байт на каждый сектор играют роль своеобразной базы данных, куда СХД записывает информацию о «здоровье» каждого сектора (данная методика, насколько известно, не применяется больше ни у одного производителя).

Как известно, у жёстких дисков с интерфейсом IDE существует технология SMART, призванная предсказывать возможные проблемы в работе диска, которая зачастую работает очень неточно, что сводит её ценность практически к нулю. У дисков же, использующихся в серьёзных СХД (диски SCSI и FibreChannel), изначально не было технологии SMART – поэтому оценка целостности и верификация данных каждого конкретного сектора – большой плюс, позволяющий дополнительно защитить данные и уведомить администратора системы о возможных проблемах задолго до момента их реального наступления.

Жёсткий диск может быть и исправен, но обладать так называемыми проблемами «мягких ошибок» («soft errors») – когда данные в секторе записаны корректно, но чтение их может давать различный результат. Такой вариант неприемлем, но «remap» (подмена) такого сектора средствами самого жёсткого диска не происходит – в этом случае и спасает технология анализа каждого сектора, применяемая у EMC.


  Источник: compreviews.ru
 



Поделиться с друзьями:


Другие новости по теме
 
Вы не авторизованный пользователь. Чтобы воспользоваться всеми возможностями сайта, зарегистрируйтесь.
 

Комментарии

Добавление комментария
Ваше имя
Ваш Email
Код Включите эту картинку для отображения кода безопасности
обновить код
Введите код